
Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 1 of 8

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR

BLIS Project Companies
November 2000

Overview

BLIS-XML is a methodology for transforming EXPRESS data models into ‘XML
Schema’ (initially XML Data Reduced (XDR)). BLIS-XML can be used with any
EXPRESS schema, or a subset of any EXPRESS schema.

BLIS-XML is a simple, straightforward methodology, based on consideration of what
information software tools need from the source schema. The transformation is done
such that data can be converted from Part21 files to BLIS-XML files and back to Part21
files without loss of information. This is possible, because the source EXPRESS
schema is known and EXPRESS tools can map the information in BLIS-XML files to
the full EXPRESS model using information in the source EXPRESS schema.

Currently, BLIS-XML schemas are defined using XDR, which defines XML schema
information that can be used to validate data instance files. In the future, we will use
the newer schema definition syntax just promoted to “Candidate Recommendation” by
W3C, which uses the file extension XSD (see http://www.w3.org/XML/Schema).

BLIS-XML schemas are open content schemas. This means BLIS-XML files may
contain more information (e.g. additional entities and attributes) than specified in the
schema. Tools that do not understand the additional information should ignore that
information.

Data transformation between EXPRESS and BLIS-XML for a specific Entity/Element
set (schema) is straightforward, given XML and EXPRESS components with sufficient
Application Programmer Interfaces (APIs). Such a converter is generic to any
EXPRESS schema and can be used for any data structured according to the given
schema. For example, during import of BLIS-XML data, this converter reads the BLIS-
XML data file into the XML component (e.g. Microsoft’s msxml.dll), iterates through the
XML data and uses the API of the EXPRESS component to create the model inside
that EXPRESS component. At this point, the data model looks exactly the same as
when the EXPRESS component loads the equivalent Part21 file. The client application
using the EXPRESS component sees no difference; there is no need to write custom
code in the client application for supporting BLIS-XML.

Using BLIS-XML with XML components (e.g. msxml.dll) alone is not quite as simple. It
can be done, but) the logic of the EXPRESS model must be implemented, as it has
been in components that load/use the EXPRESS schema.
Another significant advantage to leveraging existing EXPRESS based components is
that client applications can support import/export of both Part21 and BLIS-XML data

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR BLIS Project

Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 2 of 8

files, using the same code. Use of XML based components alone, will only support
BLIS-XML data files.

The first BLIS-XML schema published by the BLIS project was for the BLIS project
“views” of the IFC R2.0 model. This schema is called “BLIS-XML for IFC R2.0”.
Examples in this document are taken from that schema.

Specifications

The BLIS-XML tag
A BLIS-XML data set is bounded by the following BLIS-XML tag.

<BLIS-XML schema="name_of_the_schema">
...
</BLIS-XML>

This provides a standard container for BLIS-XML data, even if that data is
embedded in a larger XML data set (or file).

The BLIS-XML schema used to structure the data is identified by the “Schema” -
attribute. This can be used to validate the data. It is not the same as the source
EXPRESS schema name (which can be found in the header)

Header
The header replicates the header section of Part21 files. Unlike Part21 the header
section can be expanded to contain other relevant information. The header used in
“BLIS-XML for IFC R2” is as follows:

<ElementType name ="FILE_HEADER_SECTION" content="eltOnly" order="seq">
 <element type="FILE_DESCRIPTION" />
 <element type="FILE_NAME" />
 <element type="FILE_SCHEMA" />
</ElementType>

<ElementType name ="FILE_DESCRIPTION" content="eltOnly">
 <element type="description" minOccurs="1" maxOccurs="*"/>
 <attribute type="implemenetaion_level" required="no"/>
</ElementType>

<ElementType name="FILE_NAME" content="eltOnly" >
 <element type="author" minOccurs="1" maxOccurs="*"/>
 <element type="organization" minOccurs="1" maxOccurs="*"/>
 <attribute type="name" required="yes"/>
 <attribute type="time_stamp" required="no"/>
 <attribute type="preprocessor_version" required="no"/>
 <attribute type="originating_system" required="no"/>

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR BLIS Project

Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 3 of 8

 <attribute type="authorization" required="no"/>
</ElementType>

<ElementType name ="FILE_SCHEMA" content="eltOnly" >
 <element type="schema_identifiers" minOccurs="1" maxOccurs="*"/>
</ElementType>

<AttributeType name="implemenetaion_level" dt:type="string"/>
<AttributeType name="name" dt:type="string"/>
<AttributeType name="time_stamp" dt:type="string"/>
<AttributeType name="preprocessor_version" dt:type="string"/>
<AttributeType name="originating_system" dt:type="string"/>
<AttributeType name="authorization" dt:type="string"/>

<ElementType name ="description" content="empty">
 <attribute type="StringValue" required="yes"/>
</ElementType>

<ElementType name ="author" content="empty">
 <attribute type="StringValue" required="yes"/>
</ElementType>

<ElementType name ="organization" content="empty">
 <attribute type="StringValue" required="yes"/>
</ElementType>

<ElementType name ="schema_identifiers" content="empty">
 <attribute type="StringValue" required="yes"/>
</ElementType>

Elements
Entities in the EXPRESS model map to elements in the XML model.

<ElementType name="IfcBuilding" content="empty">
 ...
</ElementType>

BLIS-XML results in a ‘flat’ schema where the inheritance defined in the EXPRESS
model has been removed because XDR does not support inheritance. As a result
each element in the BLIS-XML schema that inherits attributes in the EXPRESS
schema has a copy of the attributes it inherits. This BLIS-XML tool set creates
redundant information in the schema files, but this does not affect the data files in
any way. Even if XDR supported inheritance the data files would be exactly the
same.

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR BLIS Project

Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 4 of 8

Although BLIS-XML methodology and tool set can generate a ‘flat’ copy of all
inherited attributes defined in the EXPRESS schema, they do not require that all
attributes be copied. In some cases, leaf node objects inherit attributes from
superclasses that are not relevant to the leaf node. The BLIS-XML methodology
allows omission of such irrelevant attributes in the BLIS-XML schema, so long as
they are defined as OPTIONAL in the EXPRESS schema.

Attributes
There are two alternatives in transforming EXPRESS attributes to XML. The first is
to use XML attributes. The second is to use XML ‘sub elements.’ BLIS-XML uses
both techniques. Attributes are used for simple data types. Sub elements are used
for LIST and SET attributes.

There is couple of special exceptions to these general rules. The first is that a
LIST or SET of object references is transformed to idrefs. The second
exception is for SELECT type values (see SELECT types below).

<ElementType name="IfcAddress" content="eltOnly">
 <element type="AddressLines" minOccurs="0" maxOccurs="*"></element>
 ...
 <attribute type="WWWHomePageURL" required="no"></attribute>
</ElementType>

It would be easier to manipulate BLIS-XML files with XSL scripts if all attributes
were modeled as sub elements. However, since the object references in a BLIS-
XML files use the idref mechanism (see References below), use of XSL scripts
is already very limited. In general, manipulating BLIS-XML files will require a
programming language. When using a programming language to manipulate an
XML Document Object Model (DOM), it makes no difference if EXPRESS attributes
are modeled as XML attributes or XML sub elements. Since XML attributes are
more compact, the BLIS group has opted to use them for simple attributes.

Overriding attributes

Usually attributes in BLIS-XML schema definitions are defined globally. This means
that there is one definition, with a unique name, in the BLIS-XML schema. This
works well so long as EXPRESS attribute names are used consistently (i.e. all
attributes with the same name share the same data type and semantic meaning).
However, this consistency is not required, nor enforced in EXPRESS schemas. In
situations where two EXPRESS attributes have different data types or semantic
meanings, the BLIS-XML schema will override global attributes locally. A local
override is defined by putting the local definition of the attribute inside the
ElementType tag.

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR BLIS Project

Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 5 of 8

<!-- Global definition of the "PredefinedType" attribute -->
<AttributeType name="PredefinedType"
 dt:type="enumeration"
 dt:values="Office Restroom Storage ...">
</AttributeType>

<!-- Local override of the "PredefinedType" attribute -->
<ElementType name="IfcPlumbingFixture" content="empty">
 ...
 <AttributeType name="PredefinedType"
 dt:type="enumeration"
 dt:values="Faucet Sink Toilet Urinal Shower ...">
 </AttributeType>
 <attribute type="PredefinedType" required="yes"></attribute>
 </ElementType>

INVERSE attributes

INVERSE attributes are used in EXPRESS schemas as back-pointers in object
references. The references can be queried on attribute level asking – which objects
have references to this object from an attribute called e.g. ‘xyz’. EXPRESS-based
tools have methods for querying these attributes, but this is not directly possible
with XML tools since XDR does not support this ‘back-pointer’ concept. This is a
challenges, since many EXPRESS models, such as IFC, rely heavily on the use of
INVERSE attributes.

While INVERSE attributes are not included in Part21 files, the BLIS-XML
methodology supports their addition to the XML schema and data files. Inverse
attributes in the XML schema are exactly like other attributes. When BLIS-XML
data is imported by EXPRESS based tools the INVERSE attributes are ignored.
When BLIS-XML data is imported by XML based tools the INVERSE attributes can
be used as they are in EXPRESS tool sets.

<ElementType name="IfcWall" content="empty">
 ...
 <attribute type="IsDefinedBy" required="no"></attribute>
 ...
</ElementType>

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR BLIS Project

Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 6 of 8

Data types

BLIS-XML does not yet support all data types that could be supported by XML, e.g.
all Real values use r8 (r4 is not used). This is because in BLIS-XML the data types
have been reduced to the basic data types used in programming languages such
as C++ and VB.

The following table shows the data type conversions used in BLIS-XML

Express BLIS-XML

STRING string

NUMBER number

INTEGER int

REAL r8

LOGICAL boolean

BOOLEAN boolean

BINARY bin.hex

References
XML models are best suited to represent simple hierarchical structures where one
thing is clearly contained by another thing (e.g. an address contains a phone
number). EXPRESS models generally support a richer set of relationships. It is
simply not possible to represent a typical EXPRESS model using a single XML
hierarchy.

Therefore, BLIS-XML schemas are not structured according to any single
relationship in the source EXPRESS schema. Instead, BLIS-XML uses the
id/idref/idrefs construct in XML to encode the references (relationships)
between objects. Similar to the line number in Part21 files, each entity has a XMLID
attribute of type ID. This XMLID can be any string value that is legal for a token of
type ID.

 For example, the XMLIDs are assigned as a following rule:

A prefix letter “i” + sequence number e.g. “i1”, “i2”,…”i100”.

<AttributeType name="XMLID" dt:type="id"></AttributeType>

<ElementType name="IfcBuilding" content="empty">
 <attribute type="XMLID" required="yes"></attribute>
 ...
</ElementType>

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR BLIS Project

Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 7 of 8

References to elements are made using attributes of type idref or idrefs and
the XMLID of the element that is being referenced. The XMLIDs in the attribute of
type idrefs will be appeared like “i1 i2 i3”. A white space is inserted between
XMLIDs.

<AttributeType name="RelatingObject" dt:type="idref"></AttributeType>
<AttributeType name="RelatedObjects" dt:type="idrefs"></AttributeType>

EXPRESS models are strongly typed, which makes it possible to define exactly the
type of objects that can be referenced by another object. XML has virtually no
typing in this sense and an idref or idrefs can legally point to any entity type in
the model. There is currently no way to constrain this in XDR. Therefore, it is also
a limitation in BLIS-XML. We have been careful to specify the legal references in
the documentation. If BLIS-XML data is imported into an EXPRESS based
component. That component can validate the references. XML based components
will be unable to do this automatically.

As a result of this transformation, BLIS-XML files are almost completely ‘flat’. They
don’t contain the typical hierarchical tag structure of XML files, the structure is
much closer to the one used in Part21 files.

Enumerations
Enumerations in EXPRESS map directly to the enumeration data type in XML.

<AttributeType name="ProfileType"
 dt:type="enumeration"
 dt:values="Curve Area">
</AttributeType>

SELECT types
Select types must be transformed in BLIS-XML so that enough information is
preserved; to enable EXPRESS based tools to recreate the model. To enable
validation of select types in XML, they are modeled using the group construct. This
means that the select type attribute in EXPRESS will be appeared as a child
element of the entity element which contains the select type attribute. The child
element which is from select type attribute contains an element which includes the
group construct of select types.

If SELECT types are nested in the EXPRESS schema also the BLIS-XML entities
representing these SELECT types shall be nested.

These rules apply only to SELECT values that point to defined types. Object
references created through a SELECT type use the standard idref mechanism.
This is similar to the system used in Part21 exchange files.

BLIS-XML Methodology for Transforming EXPRESS data Models to XDR BLIS Project

Copyright © 2000 VTT Building Technology on behalf of the BLIS Project Companies Page 8 of 8

<ElementType name="IfcMeasureValue" content="eltOnly">
 <group order="one">
 <element type="IfcAreaMeasure"/>
 <element type="IfcBoolean"/>
 <element type="IfcInteger"/>
 <element type="IfcString"/>

 </group>
</ElementType>

<ElementType name="IfcString" content="empty">
 <attribute type="StringValue"></attribute>
</ElementType>

The resulting BLIS-XML data file has the following format:

<IfcSimpleProperty XMLID="i9068" Name="FireRating">
 <ValueComponent>
 <IfcMeasureValue>
 <IfcString StringValue="60 minute"/>
 </IfcMeasureValue>
 </ValueComponent>
</IfcSimpleProperty>

Acknowledgements
• Adachi, Yoshinobu - Secom Co. Ltd. (Japan)
• Hietanen, Jiri - qPartners Oy (Finland)

• Bazjanac, Vladimir - Lawrence Berkeley National Laboratory (USA)
• Drogemuller, Robin - CSIRO (Australia)
• Gowri, Krishnan - Pacific Northwest National Laboratories (USA)
• Houbaux, Patrick – CSTB (France)
• See, Richard - Microsoft Corporation (USA)
• Yu, Kevin – Timberline Software (USA)

